skip to main content


Search for: All records

Creators/Authors contains: "Li, Guodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Abstract One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λ irr  > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that can drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C–C coupling reactions. 
    more » « less
  3. Abstract

    The broad employment of water electrolysis for hydrogen (H2) production is restricted by its large voltage requirement and low energy conversion efficiency because of the sluggish oxygen evolution reaction (OER). Herein, we report a strategy to replace OER with a thermodynamically more favorable reaction, the partial oxidation of formaldehyde to formate under alkaline conditions, using a Cu3Ag7electrocatalyst. Such a strategy not only produces more valuable anodic product than O2but also releases H2at the anode with a small voltage input. Density functional theory studies indicate the H2C(OH)O intermediate from formaldehyde hydration can be better stabilized on Cu3Ag7than on Cu or Ag, leading to a lower C-H cleavage barrier. A two-electrode electrolyzer employing an electrocatalyst of Cu3Ag7(+)||Ni3N/Ni(–) can produce H2at both anode and cathode simultaneously with an apparent 200% Faradaic efficiency, reaching a current density of 500 mA/cm2with a cell voltage of only 0.60 V.

     
    more » « less
  4. Abstract

    Functional unit and organization (FUO) paradigm starts with functional units and assembles these functional units into specific organizations to optimize material performance. An advantage of FUO paradigm is interpretation of physical essence of traditional structure–performance relationships. Experimental achievements based on FUO paradigm abound in recent years, demanding theoretical explanations for further quantitative material design. Following FUO paradigm, here a three‐step model (bond‐region‐structure) of nanotwin (NT) unit and orientation organization to optimize mechanical performance is established. First, anisotropic elasticities of representative bonds and assembled regional elastic constants are evaluated. Second, yield conditions of different regions, which are summarized as critical resolved shear stress (CRSS) criteria of NT structure, are quantified. Third, anisotropic yield strengths of NT structure from the regional elastic constants and CRSS criteria are derived. This FUO‐based model is implemented into InSb, GaAs, and ZnS, predicted elastic constants and yield strengths are validated with molecular dynamics (MD) simulations. The method is more efficient than MD with comparable accuracy, and is also flexible to combine with density function theory and experiment. This demonstration sets foundation of NT unit and orientation organization design for achieving optimum mechanical performance.

     
    more » « less
  5. null (Ed.)
  6. null (Ed.)